File Organization and Naming Conventions

A well-organized file system is essential for effective research data management. Clear folder structures and consistent file naming conventions improve collaboration, traceability, and long-term reuse of your data. This is especially important when working in teams, handling multiple versions of files, or managing data with personal identifiers.

Back to Managing Your Research Data
Back to RDM Home page

1. Folder structure and hierarchy

Establishing a logical, scalable folder structure helps maintain clarity as your project grows.

Best practices:

  • Use folders to group files by topic, work package, or activity

  • Name folders after research themes or data types, not individuals (e.g., Survey_Data, not Alice_Folder)

  • Start broad and go specific: Use a hierarchical structure (e.g., Project_Name > Data > Interviews > Transcripts)

  • Separate active and archived files: Regularly move completed files to a distinct location to avoid clutter

  • Align with existing team conventions: Check for established practices in your lab, faculty, or discipline

  • Back up regularly: Whether files are stored locally or on a shared server, ensure automated and versioned backups are in place

  • Review periodically: Clean up or archive unused materials at the end of project phases. Set calendar reminders for regular reviews

2. File naming conventions

Consistent file names:

  • Improve discoverability

  • Help identify content, status, and authorship

  • Prevent version conflicts

  • Support automated processing

Include meaningful elements, such as:

  • Project acronym (e.g., RDA2025)

  • File content or activity (e.g., InterviewSummary)

  • Date (in ISO format: YYYY-MM-DD)

  • Version number (e.g., v01, v02_01)

  • Contributor initials (if relevant)

Example:
RDA2025_InterviewSummary_v02_2025-07-01_SB.docx

General rules:

  • Keep names short but meaningful

  • Avoid spaces and special characters (use underscores or hyphens)

  • Stick to lowercase or agreed capitalization rules

  • Use leading zeros for numbers (e.g., 01, 02) to ensure correct sorting

  • Agree on vocabulary and punctuation conventions across the team

Reference: UK Data Archive and University of Cambridge File Naming Guidance

3. Version control

Research documents often go through multiple drafts and involve several collaborators. Without version control, teams can easily lose track of changes.

Recommended versioning scheme:

  • Major changes: v01, v02, v03 …

  • Minor changes: v01_01, v01_02 …

Adding contributor and date information:
Include initials and the modification date to track individual edits.
Example: Protocol_v03_2025-06-15_ML.docx

Use a version control table for important documents, noting:

  • Version number

  • Date

  • Author

  • Summary of changes

Mark final versions clearly:
Use a suffix like _FINAL or v03_FINAL. Avoid multiple files marked as “final” (e.g., final2, newfinal…).

4. Managing personal and sensitive Data

When handling personal or sensitive information (e.g., names, addresses, email contacts), ensure data separation and pseudonymization.

Store separately:

  1. Identifiable personal data (e.g., names, emails, addresses)

  2. Research data (e.g., survey responses, interview transcripts)

Maintain a link using a unique ID (e.g., Participant_ID = 0937X) stored in a secure, access-restricted file. This ensures:

  • Compliance with data protection regulations (e.g., GDPR)

  • Clear distinction between identifiable and anonymized data

  • Flexibility for future consent verification or data re-use (if legally allowed)

Tip: Keep the ID cross-reference file encrypted or access-controlled, and limit editing permissions.

Summary Checklist

Practice

Recommendation

Folder structure

Hierarchical, logical, consistent naming by theme or task

File naming

Include project, content, date, version, contributor

Date format

Use ISO: YYYY-MM-DD

Versioning

v01, v01_01, include initials and date

File extensions

Use stable, non-proprietary formats where possible (.csv, .txt)

Sensitive data handling

Separate files, link with unique ID, restrict access

Regular reviews and backups

Monthly archiving, automatic backups, file system audits

Back to Managing Your Research Data
Back to RDM Home page

Plus d’articles sur cette thématique

  • Illustration de l’article Going further

    Going further

    Research data management
  • Illustration de l’article Type, format and volume of data

    Type, format and volume of data

    Research data management
  • Illustration de l’article Data Quality

    Data Quality

    Research data management
  • Illustration de l’article Metadata

    Metadata

    Research data management
  • Illustration de l’article Codebook

    Codebook

    Research data management
  • Illustration de l’article Document your data

    Document your data

    Research data management
  • Illustration de l’article Search for existing datasets

    Search for existing datasets

    Research data management
  • Illustration de l’article Sampling strategies

    Sampling strategies

    Research data management
  • Illustration de l’article Questionnaire design

    Questionnaire design

    Research data management
  • Illustration de l’article Compass to Research Data Management

    Compass to Research Data Management

    Research data management
  • Illustration de l’article Experimental planning

    Experimental planning

    Research data management
  • Illustration de l’article Write your DMP on DMPonline.be

    Write your DMP on DMPonline.be

    Research data management
  • Illustration de l’article Plan data management cost

    Plan data management cost

    Research data management
  • Illustration de l’article Data Management Plan (DMP)

    Data Management Plan (DMP)

    Research data management
  • Illustration de l’article Research Data Management

    Research Data Management

    Research data management
  • Illustration de l’article FAIR data principles

    FAIR data principles

    Research data management
  • Illustration de l’article Data Cleaning

    Data Cleaning

    Research data management
  • Illustration de l’article Data Collection

    Data Collection

    Research data management
  • Illustration de l’article Publish and share your data

    Publish and share your data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Research data management
  • Illustration de l’article Managing Your Research Data

    Managing Your Research Data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Open Data