Experimental planning

Proper experimental planning is essential to ensure that your research yields reliable, reproducible, and meaningful results. A well-designed experiment minimizes waste, controls for errors, and aligns with the project’s goals and constraints.

Back to RDM Home Page 
Back to Data collection

 

1. Clarify the need for an experiment

Before collecting any data, ask:

  • What is the purpose of this experiment?
  • Is the information already available in the literature, existing datasets, or models?
  • Can theoretical calculations or simulations provide sufficient insight?
  • Do you have the resources—time, budget, equipment, and expertise—to conduct the experiment?
  • Are there ethical, safety, or technical limitations?

Clearly defining the why helps ensure the experiment is necessary and feasible.

 

2. Define the research objectives

Determine what you aim to discover, test, or demonstrate.

  • List your main research questions or hypotheses.
  • Rank them by importance and feasibility.
  • Decide whether the study should be exploratory, confirmatory, or comparative.
  • Avoid focusing too narrowly on details at the expense of broader goals.

 

3. Identify variables

Experiments involve inputs (independent variables) and outcomes (dependent variables):

  • Independent variables: what you change (e.g., temperature, time, dosage).
  • Dependent variables: what you measure in response (e.g., growth, signal strength, error rate).

Before beginning:

  • Decide which variables are critical.
  • Determine the appropriate range or levels to test.
  • Ensure tools or techniques are available and properly calibrated to measure them.
  • Evaluate if the expected precision is sufficient to answer your research question.

 

4. Design the experiment

To get the most information with the least effort:

  • Choose a study design (e.g., factorial, randomized block, response surface).
  • Limit the number of variables tested simultaneously unless using a multivariable design.
  • Consider replicates to account for variability and improve confidence.
  • Plan how to document and organize results to avoid data loss or misinterpretation.

Three key questions:

  • What types of measurement errors should you minimize?
  • What is the minimum number of experiments needed?
  • When and how often should trials be repeated?

 

References & Suggested Reading

You can replace general advice with references grounded in good practice. Here are solid, discipline-neutral sources:

 

Back to RDM Home Page 
Back to Data collection

 

Plus d’articles sur cette thématique

  • Illustration de l’article Going further

    Going further

    Research data management
  • Illustration de l’article Type, format and volume of data

    Type, format and volume of data

    Research data management
  • Illustration de l’article Data Quality

    Data Quality

    Research data management
  • Illustration de l’article File Organization and Naming Conventions

    File Organization and Naming Conventions

    Research data management
  • Illustration de l’article Metadata

    Metadata

    Research data management
  • Illustration de l’article Codebook

    Codebook

    Research data management
  • Illustration de l’article Document your data

    Document your data

    Research data management
  • Illustration de l’article Search for existing datasets

    Search for existing datasets

    Research data management
  • Illustration de l’article Sampling strategies

    Sampling strategies

    Research data management
  • Illustration de l’article Questionnaire design

    Questionnaire design

    Research data management
  • Illustration de l’article Compass to Research Data Management

    Compass to Research Data Management

    Research data management
  • Illustration de l’article Write your DMP on DMPonline.be

    Write your DMP on DMPonline.be

    Research data management
  • Illustration de l’article Plan data management cost

    Plan data management cost

    Research data management
  • Illustration de l’article Data Management Plan (DMP)

    Data Management Plan (DMP)

    Research data management
  • Illustration de l’article Research Data Management

    Research Data Management

    Research data management
  • Illustration de l’article FAIR data principles

    FAIR data principles

    Research data management
  • Illustration de l’article Data Cleaning

    Data Cleaning

    Research data management
  • Illustration de l’article Data Collection

    Data Collection

    Research data management
  • Illustration de l’article Publish and share your data

    Publish and share your data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Research data management
  • Illustration de l’article Managing Your Research Data

    Managing Your Research Data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Open Data