FAIR data principles

Learn about the FAIR data guiding principles, which state that data should be Findable, Accessible, Interoperable, and Reusable.

Back to RDM Home Page

 

For several years, the European Commission has worked to improve access to scientific outputs, including research data. To support this effort, it has developed the FAIR data guiding principles, which state that data should be Findable, Accessible, Interoperable, and Reusable. The principles are detailed below, along with useful resources:

Findable: (Meta)data should be easily located by humans and machines. This means:

  • F1. (Meta)data are assigned a globally unique and persistent identifier.

  • F2. Data are described with rich metadata.

  • F3. Metadata explicitly include the identifier of the data they describe.

  • F4. (Meta)data are registered or indexed in a searchable resource.

Accessible: Data should be easy to retrieve (with authentication or authorization if necessary):

  • A1. (Meta)data are retrievable by their identifier using a standardized communications protocol.

    • A1.1 The protocol is open, free, and universally implementable.

    • A1.2 The protocol supports authentication and authorization where necessary.

  • A2. Metadata remain accessible even if the data are no longer available.

Interoperable: Data should be usable across different platforms and domains:

  • I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

  • I2. (Meta)data use vocabularies that adhere to FAIR principles.

  • I3. (Meta)data include qualified references to other (meta)data.

Reusable: Data should be well-documented to enable replication and re-use:

  • R1. (Meta)data are richly described with accurate and relevant attributes.

    • R1.1 (Meta)data are released with a clear and accessible usage license.

    • R1.2 (Meta)data are associated with detailed provenance.

    • R1.3 (Meta)data meet domain-relevant community standards.

Useful Resources:

Back to RDM Home Page

Plus d’articles sur cette thématique

  • Illustration de l’article Data Cleaning

    Data Cleaning

    Research data management
  • Illustration de l’article Data Collection

    Data Collection

    Research data management
  • Illustration de l’article Publish and share your data

    Publish and share your data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Qui sont vos personnes ressources pour la gestion des données de recherche ? DPOs

    Research data management
  • Illustration de l’article Managing Your Research Data

    Managing Your Research Data

    Research data management
  • Illustration de l’article Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Qui sont vos personnes ressources pour la gestion des données de recherche ?

    Research data management